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Abstract
We calculate the exact density of states (DOS) for the three classical and
two non-classical random matrix ensembles for finite matrix size N using
supersymmetric integrals. The 1/N expansion yields, already in lowest order,
good approximations to the exact result even for small values of N ∼ 5. We
conjecture a connection between the N-dependence of the oscillating part of
the DOS and the short-distance behaviour of the two-level correlation function.

PACS numbers: 02.50.Ey, 05.45.Ac, 71.20.−b

1. Introduction

Random matrix theory (RMT) has become a well-established tool to describe the statistical
properties of the energy levels of quantum many-particle systems in the ergodic regime [1].
It is based on the assumption that (apart from global symmetry conditions as spin rotation-
or time-reversal invariance) the Hamiltonian H of a system with N states is described by a
probability distribution

〈Hij 〉 = 0 〈HijH
∗
kl〉 = gδikδjl .

RMT derives the statistical properties of the eigenvalues of H from this distribution of its
matrix elements. Whereas most of the applications are still centred around the three classical
Wigner–Dyson (WD) ensembles, the Gaussian unitary, orthogonal and symplectic ensembles
(GUE, GOE and GSE), there is also interest in certain generalizations of the standard cases,
leading to seven additional symmetry classes, which differ from each other by their behaviour
under a set of discrete spacetime transformations. Three of them are the chiral analogues
to the WD ensembles and four are relevant for mesoscopic normal-superconducting hybrid
systems [2].

RMT is a soluble description of the statistics of disordered and chaotic systems in the
sense that all n-level correlation functions can be computed in principle exactly. The most
important of these correlation functions is the two-level correlation function as it already
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contains the main information about the repulsion of neighbouring levels and discerns the three
WD ensembles unambiguously. Several mathematical tools are available to compute these
correlation functions, e.g. the method of orthogonal polynomials [3] or the supersymmetric
method [5]. The last method maps the matrix ensemble to a zero-dimensional nonlinear sigma
model in the limit of large matrix size N. Because then the limit N → ∞ is implicit in all
calculations, it is not possible to study directly finite-size effects, i.e. the dependence of the
average level spacing �(E) at energy E on N.

Instead one is forced to fix a certain scaling of the overall normalization of H with N. In
this way the two energy scales, the bandwidth 2Emax and the mean level spacing �(E), are
entangled with the matrix size. Either the bandwidth is kept at a fixed finite value (macroscopic
scaling) or the mean level spacing �(E) ∼ 1 at a certain energy E (microscopic scaling). The
first scaling is used for the DOS (and yields a semicircle for N → ∞), the second is appropriate
to extract the universal level repulsion. The non-classical ensembles (we will treat classes
D and C in this paper) show characteristic features of the DOS, deviating from the classical
ensembles, but this was calculated only in the microscopic scaling limit [2, 6, 7]. The DOS
varies strongly on the scale of level spacing for E ∼ 0, and therefore becomes dependent on
the position within the spectrum. In this case the usual unfolding procedure which normalizes
the DOS to a constant over many consecutive levels is inapplicable. The question arises,
whether the new features of the DOS survive the macroscopic scaling �(E) ∼ 1/N leading to
a finite bandwidth, which is the physically relevant case for solid-state applications. It seems,
therefore, advisable to compute the DOS exactly for finite N and to study its behaviour in the
limit N → ∞ using this formula. The finite-N case is interesting in its own right (see, e.g.,
[8]).

Results for finite N were obtained via the orthogonal polynomial method [3], where the
exact DOS for finite N is given for the three WD ensembles. Additionally, Itoi et al have
calculated the smooth part of the correction for the WD ensembles using different methods
[4]. They missed, however, the important oscillatory part (see below), and assumed integer
exponents in the 1/N expansion which is not true for the GSE. We will show in the following
that the supersymmetric method can also be used and is technically simpler. The possibility
of calculating the DOS for finite N was briefly mentioned in [9].

The outline of the paper is as follows. In section 2, we study the simplest case, the GUE,
and explain in detail how the exact DOS for finite N can be obtained. We then use a saddle-point
method to derive a 1/N expansion. This expansion is not based on a supersymmetric saddle-
point manifold but,on the contrary, is effected by exact integration over the fermionic variables,
which inevitably breaks explicit supersymmetry. The first nonvanishing term in this expansion
already yields excellent approximations to the exact result for small N and everywhere in the
spectrum except at the band edge, where this correction diverges, due to the invalidity of
the chosen saddle point. In section 3, we give the exact DOS for finite N of the orthogonal
and symplectic ensembles as well as classes C and D. These ensembles are especially simple
among the non-classical ones because the joint eigenvalue distribution can be associated with
free fermions on a line in an external potential [2]. Nevertheless, the calculations of the
DOS become simple only if the confining part of the potential is neglected, corresponding to
microscopic scaling, thereby loosing all information about the relation between �(E) and N
which is just given by the confinement. Therefore here we treat class C/D together with the
WD ensembles. Regarding the level repulsion they belong to the unitary universality class,
i.e. without time reversal invariance (see below). Our method, of course, extends to all other
Gaussian ensembles as well. Section 4 contains the 1/N expansion around the bosonic saddle
points for GOE, GSE and class C/D. We observe a relation between the N-dependence of
the oscillatory part of the correction terms and the short-distance behaviour of the two-level
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correlation function. Then we determine the average level spacing at the band centre, where
the DOS of classes C and D deviates strongly from the (constant) behaviour known in the WD
ensembles, in a way independent of any scaling assumption. Section 5 contains a summary of
our results.

2. The unitary ensemble

The ensemble consists of complex Hermitian N×N-matrices H = H †. We represent the DOS
at complex energy z (Im z > 0) as the following expectation value (summation convention is
understood):

〈n(z)〉 = 1

πN
Re

∫
D[φ, φ†,H ]x∗

i xi e−SH . (1)

Here φ = (xi, ψi)
T , φ† = (x∗

i , ψ̄ i ) is a vector with N bosonic and N fermionic components.
We set the variance of H to g = 1/2. The action reads

SH = iφ†
i (Hij − zδij )φj + trH 2. (2)

Integration over H yields an effective action

S4 = −izφ†
i φi + 1

4 trg
(
φiφ

†
i

)2
. (3)

A Hubbard–Stratonovich transformation to Q variables [10] (the q, p are bosonic and the ϑ, ϑ̄

are fermionic),

Q =
(

q ϑ̄

ϑ ip

)
(4)

gives an action bilinear in φ:

SQ = iφ†
i (Q − z)φi + trg Q2. (5)

Now we integrate over the φ fields and the Grassmann variables ϑ, ϑ̄ exactly to get an action,
which depends only on the two real variables q and p. The DOS reads

〈n(z)〉 = −2

πN
Im

∫
D[Q]

q e−trgQ2

detg(Q − z)N
= −2

πN
Im

∫
dp dq

π
q e−p2−q2 (ip − z)N

(q − z)N

×
(

1 − N

2(q − z)(ip − z)

)
. (6)

If we now set z = E + iε with E ∈ R and perform the integration over p and q, we get the
exact finite-N result [3]

〈n(E)〉 = e−E2

2NN!
√

π

(
H 2

N(E) − HN+1(E)HN−1(E)
)

(7)

where Hn(E) denotes the nth Hermite polynomial. To perform an expansion around the limit
N = ∞, we introduce a rescaled energy variable x = E/

√
N . With this scaling the bandwidth

becomes finite, and the DOS a continuous normalizable distribution in the limit N → ∞.
After the rescaling (which is done for p and q as well) we get for the DOS (after integration
over ϑ, ϑ̄ but before integration over p and q)

〈n(x)〉 = −2

π
Im

∫
dp dq

π/N
q e−Np2−Nq2 (ip − x)N

(q − x)N

(
1 − 1

2(q − x)(ip − x)

)
(8)

which can be written as

〈n(x)〉 =
∫

dp dq e−NS(p,q,x)f (p, q, x). (9)
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q=x

q

Re

Im

Figure 1. The saddle points of q and possible integration paths. Full lines denote the stable
directions and dotted lines the unstable directions.

Im

Re

p

Figure 2. The saddle points for p.

The large prefactor N in the exponent allows for a saddle-point approximation of the p,

q integrals in the usual way. We get four solutions of the saddle-point equations

q± = x/2 ± i/2
√

2 − x2 p± = −iq±. (10)

The stability matrix is

∂2S

2∂q2
= 1 − q2

± = ±i
√

2 − x2q± =: �± (11)

∂2S

2∂p2
= �± (12)

∂2S

∂p∂q
= 0. (13)

Figures 1 and 2 show the location of the saddle points in the complex plane along with their
stable directions and possible integration paths. Integral (6) converges only for Im z > 0.
This means that the integration path of q must pass below the singularity at q = x. This forces
us to use only the saddle point q− of the q integration: a path of integration which also crosses
q+ leads through the region between the two saddle points, where the integrand of (8) is large.
Therefore, the correct choice for the path of integration over q is the full line in figure 1.
In contrast, it is possible to use an integration path which goes through both saddle points for
the p integral, which is shown in figure 2. After the change of variables

q → q− +
δq√
N�−

p → p± +
δp√
N�±

(14)

we may perform an expansion in δq and δp, which defines the 1/N expansion. The action
S

(1)

SP = S(q−, p−) vanishes and yields the well-known semicircle law as the only contribution
surviving in the N → ∞ limit. The action S

(2)
SP = S(q−, p+) does not vanish, but is purely
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Figure 3. Exact DOS of the GUE for N = 7. The dashed line is the 1/N approximation.

imaginary and yields a contribution ∼e−NS
(2)
SP of modulus 1. This contribution disappears in

the N = ∞ limit, because the factor
(
1 − 1

2(q−x)(ip−x)

)
vanishes for q = q−, p = p+. It

yields, however, an important oscillatory contribution ∝ 1/N , whereas the (non-oscillatory)
corrections to the first saddle point (q−, p−) start with order 1/N2. The final result is

〈n(x)〉 =
√

2 − x2

π
− (−1)N cos

[
NS

(2)
SP (x)

]
π

√
2N(2 − x2)

+ O

(
1

N2

)
(15)

with

S
(2)

SP (x) = x
√

2 − x2 + 2 arcsin(x/
√

2) (16)

and
d

dx
S

(2)

SP (x) = 2
√

2 − x2 = 2πn0(x) (17)

where the zeroth order approximation to the DOS (the semicircle) is written as n0(x) =
(1/π)

√
2 − x2. The exact density of states and the 1/N approximation are shown in figure 3.

From (16) and (17) we note that the number of maxima of the oscillatory 1/N term equals
N and the local width between two maxima scales as the inverse of the DOS in zeroth
approximation. The positions of the maxima give, therefore, the locations of eigenvalues
for a ‘typical’ realization of a random matrix from the GUE with one state per maximum on
average. Identifying the distance between two adjacent maxima with the average level spacing
at x = E/

√
N , for large N we get the following expression for �(E):

�(E) ≈ 1√
Nn0(E/

√
N)

(18)

which is valid for E not too close to the band edge. The 1/N correction obviously diverges
at the band edge, because the saddle points coalesce and as a consequence the stability matrix
vanishes.

3. The other ensembles

The elements of the orthogonal, symplectic and class C/D ensembles are conveniently
represented as 2N × 2N-matrices with a 2 × 2-block structure:

H =
(

A B

C D

)
(19)

where the N × N-matrices A,B,C,D fulfill a set of conditions defining different ensembles.
We set the variance of H to g = 1 in the following, which yields a bandwidth of 4 in all cases.
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3.1. The orthogonal ensemble

The elements of the GOE are real symmetric 2N ×2N-matrices: H = HT = H ∗. To simplify
calculations, it is convenient to use instead of H the unitary equivalent matrix M = UHU †

with U = exp(i(π/4)σ1) ⊗ 11N , where σ1 is a Pauli matrix acting on the 2 × 2-blocks. If H
is real symmetric, M fulfils the relation M = σ1M

T σ1. This entails the following relation
among the block matrices

M =
(

A B

B† AT

)
(20)

where A is a Hermitian N × N-matrix and B is complex symmetric. As in section 2, we write
for the DOS

〈n(z)〉 = 1

2πN
Re

∫
D[φ, φ†,M](x∗

1ix1i) e−S (21)

with φ = (x1, x2, ψ1, ψ2)
T , where the x1/2, ψ1/2 are N-dimensional complex bosonic,

respectively fermionic vectors and S reads

S = iφ†(M − z)φ + 1
2 tr M2. (22)

Now we introduce the notation

χ1j = (x1j , x
∗
2j , ψ1j , ψ̄2j )

T χ2j = (x2j , x
∗
1j , ψ2j , ψ̄1j )

T (23)

(j is the index of the N-dimensional tensor component) together with the transposition

χt
1j = (x∗

1j , x2j , ψ
∗
1j ,−ψ2j ) χ t

2j = (x∗
2j , x1j , ψ

∗
2j ,−ψ1j ). (24)

After integration over M, we get the quartic action in χ, χt :

S4 = −iχt
1iχ1i + 1

8 trg
(
χ1iχ

t
1i + χ2iχ

t
2i

)2
. (25)

After transformation to the Q matrix

Q =




q1 q∗
2 ϑ̄1 −ϑ2

q2 q1 ϑ̄2 −ϑ1

ϑ1 ϑ2 ip 0
ϑ̄2 ϑ̄1 0 ip


 (26)

we obtain

〈n(z)〉 = −1

πN
Im

∫
D[Q]

q1e− 1
2 trg Q2

detg(Q − z)N
(27)

with

detg Q = Q

(ip)2
exp

(
− 2

Q(ip)
(q1�1 − q2�2 − q∗

2 �̄2) − 2�2�̄2

Q(ip)2

)
(28)

and Q = q2
1 − q2q

∗
2 ,�1 = ϑ̄1ϑ1 + ϑ̄2ϑ2,�2 = ϑ̄1ϑ2. Note that the Grassmann integration

contains now quartic terms in ϑ, ϑ̄ , which can nevertheless be done exactly. The result is
(q = q1, r = q2q

∗
2 )

〈n(z)〉 = −1

πN
Im

∫
dp dq

π
dr e−p2−q2−rq

(ip − z)2N

[(q − z)2 − r]N

×
(

1 − 2N(q − z)

[(q − z)2 − r](ip − z)
+

(2N − 1)N

2[(q − z)2 − r](ip − z)2

)
. (29)
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Setting now as above z = E + iε and integrating over p, q and r, we obtain the exact DOS in
terms of Hermite polynomials and the error function:

〈n(E)〉 = e−E2

4NN
√

π

(
H2N−1(E)2 − H2N(E)H2N−2(E)

(2N − 2)!
− H2N−1(E)

(N − 1)!

×
(

N−1∑
k=1

2k!

(2k)!
H2k−1(E) −

√
π

2
e

E2

2 erf
E√

2

))
. (30)

3.2. The symplectic ensemble

Here we have

H =
(

A B

B† AT

)
(31)

with A is Hermitian and B is complex antisymmetric. Proceeding as in the case of the GOE
(the definition of χ, χt is the same), we find the quartic action

S4 = 1
8 trg

(
χ1iχ

t
1i + �3χ2iχ

t
2i�3

)2
(32)

where �3 = σ3 ⊗ 11N . The corresponding Q matrix reads now

Q =




q 0 ϑ̄1 ϑ̄2

0 q −ϑ2 −ϑ1

ϑ1 ϑ̄2 ip1 ip∗
2

ϑ2 ϑ̄1 ip2 ip1


 (33)

and the DOS reads

〈n(z)〉 = −1

πN
Im

∫
D[Q]

q e− 1
2 trgQ2

detg(Q − z)N
(34)

with

detg Q−1 = P

q2
exp

(
2

Pq
(ip1�1 − ip2�2 − ip∗

2�̄2) − 2�2�̄2

Pq2

)
(35)

and P = (ip1)
2 − (ip2)(ip∗

2),�1 = ϑ̄1ϑ1 + ϑ̄2ϑ2 and �2 = ϑ̄2ϑ1. Setting p = p1 and
r = p2p

∗
2 , equation (34) reads after integration over the Grassmann variables,

〈n(z)〉 = −1

πN
Im

∫
dp dq

π
drq e−p2−q2−r [(ip − z)2 + r]N

(q − z)2N

×
(

1 − 2N(ip − z)

[(ip − z)2 + r](q − z)
+

(2N + 1)N

2[(ip − z)2 + r](q − z)2

)
(36)

and

〈n(E)〉 = e−E2

(2N)!
√

π

(
1

4N
(H2N(E)2 − H2N+1(E)H2N−1(E)) − N!

2N
H2N(E)

N−1∑
k=0

H2k(E)

4kk!

)
.

(37)
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3.3. Class D

The elements of class D are parametrized as

H =
(

A B

B† −AT

)
(38)

with A Hermitian and B complex antisymmetric. The quartic action reads (in the notation
above)

S4 = 1
8 trg

((
χ1iχ

t
1i + χ2iχ

t
2i

)
�3

)2
(39)

and the Q matrix

Q =




q1 q∗
2 −ϑ1 −ϑ2

q2 −q1 ϑ̄2 ϑ̄1

ϑ̄1 ϑ2 ip 0
ϑ̄2 ϑ1 0 −ip


 . (40)

For 〈n(z)〉 we get

〈n(z)〉 = −1

πN
Im

∫
D[Q]

q1 e− 1
2 trgQ2

detg(�3Q − z)N
(41)

with

detg �3Q = Q

(ip)2
exp

(
− 2

Q(ip)
(q1�1 − q2�2 + q∗

2�̄2) − 2�2�̄2

Q(ip)2

)
(42)

and Q = q2
1 + q2q

∗
2 ,�1 = ϑ̄1ϑ1 − ϑ̄2ϑ2,�2 = ϑ1ϑ2. The integrand of (41) contains a pole

depending on q = q1 and r = q2q
∗
2 . To circumvent it, we have to deform the integration path

into the complex plane

q → e−iπ/4q + εeiπ/4 tanh(q/ε) (43)
√

r → eiπ/4√r + εe−iπ/4 tanh(
√

r/ε) (44)

for Re z > 0 and ε must be small enough: 0 < ε < ( Im z + Re z)/
√

2. We then find

〈n(z)〉 = −1

πN
Im

∫
dp dq

π
drq e−p2−q2−r (ip − z)2N

[(q − z)2 + r]N

(
1 − N(2N − 1)

2[(q − z)2 + r](ip − z)2

)
(45)

and

〈n(E)〉 = −(−1)Ne−E2

N!4N
√

π

(
(−1)N(N − 1)!

(2N − 2)!
H2N(E)H2N−2(E) + 2EH2N−1(E)

×
(

N−1∑
k=1

(−1)kk!

(2k)!
H2k(E) + 1 +

1

2E2

))
. (46)

3.4. Class C

The parametrization reads

H =
(

A B

B† −AT

)
(47)
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Table 1. The additional saddle points for the GOE and GSE.

Ensemble p q r

GOE −i
(

x
2 ± i

√
1 − x2

4

)
x
2

x2

4 − 1

GSE −i x
2

x
2 ± i

√
1 − x2

4 1 − x2

4

with A Hermitian and B complex symmetric. The quartic action is

S4 = trg
(
χ1iχ

t
1i�3 + �3χ2iχ

t
2i

)2
(48)

with the Q matrix


q 0 −ϑ1 ϑ̄2

0 −q −ϑ2 ϑ̄1

ϑ̄1 ϑ̄2 ip1 ip∗
2

ϑ2 ϑ1 ip2 −ip1


 . (49)

We have

〈n(z)〉 = −1

πN
Im

∫
D[Q]

q1e− 1
2 trg Q2

detg(�3Q − z)N
(50)

with

detg(�3Q)−1 = P

q2
exp

(
2

Pq
(ip1�1 + ip2�2 − ip∗

2�̄2) − 2�2�̄2

Pq2

)
(51)

and P = (ip1)
2 + (ip2)(ip∗

2),�1 = ϑ̄1ϑ1 − ϑ̄2ϑ2 and �2 = ϑ̄1ϑ̄2. With p = p1, r = p2p
∗
2

the result reads

〈n(z)〉 = −1

πN
Im

∫
dp dq

π
dr ep2−q2−rq

[(ip − z)2 − r]N

(q − z)2N

(
1 − N(2N + 1)

2[(ip − z)2 − r](q − z)2

)
(52)

〈n(E)〉 = (−1)NN! e−E2

(2N)!
√

π

(
H2N(E)

N∑
k=0

(−1)kH2k(E)

k!4k
+

H2N+2(E)

4N

N−1∑
k=0

(−1)kH2k(E)

k!4k

)
.

(53)

4. Saddle-point approximation

The saddle-point approximation for the four ensembles proceeds as in the unitary case, in
general: all four ensembles share the saddle points q± = x/2 ± i

√
1 − x2/4, p± = −iq±,

r0 = 0 (x = E/
√

N).1 As in the unitary case, the points (q+, p±, r0) have to be avoided
by the integration path. The fluctuations are quadratic in p and q and linear in r around the
two remaining SP (q−, p±, r0). Apart from them, we have additional SP for the GOE and the
GSE, given in table 1.

1 Strictly speaking, r is at the boundary of the integration domain and therefore not a saddle point, but nevertheless
corresponds to an extremum of the action.
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The additional SP cannot be reached in the GOE case (rSP < 0), but has to be included for
the GSE (rSP > 0). In classes C and D there is an additional saddle point manifold at x = 0.
However, our results displayed below are obtained by confining the analysis to the standard
saddle points, which exist for all values of x, thereby assuming continuity in the limit x → 0.
In principle, this procedure could have led to an additional singularity at x = 0 similar to the
divergence at the band edge. But the comparison with the exact DOS in these cases shows that
our assumption is indeed correct and the additional saddle points play no role in computing
the 1/N correction. This view is supported by the work of Ivanov [7], who calculates the
saddle-point manifold at x = 0 to derive the DOS in the microscopic scaling.

We give in the following the results for the 1/N expansion of the GOE, GSE and class
C/D.

4.1. The orthogonal ensemble

Let us define the N = ∞ approximation to the DOS of the GOE as n0(x) = (1/π)
√

1 − x2/4.
Then the 1/N expansion reads to order 1/N2

〈n(x)〉 = n0(x) − 1

N

1

8π2n0(x)
+

1

N2

3 + x2

128π6n0(x)5

− 1

N2

1

64π6n0(x)5
cos[2NS0(x) − arcsin(x/2)] (54)

with

S0(x) = 2 arcsin(x/2) + x
√

1 − x2/4 (55)

S′
0(x) = 2πn0(x) (56)

analogous to the unitary case. We observe the same features as in the GUE case. The number
of maxima of the oscillatory part within the band −2 < x < 2 given by the semicircle is 2N ,
the total number of levels, so we have one level per maximum. The correction diverges close
to the band edge as expected. Apart from the oscillatory contribution there is a non-oscillatory
contribution of order 1/N . However, the information about the level repulsion is encoded
in the oscillating part ∝ cos(2NS0(x)). This term is of order 1/N2, which means that the
repulsion of levels is weaker in the GOE than in the GUE. Formally, we can write

〈n(x)〉 = n0(x) +
1

N
(non-oscillating term) +

1

Nα
(oscillating term) (57)

with α = 2. For the GUE α = 1. Now the two-level correlation function R2(r) behaves for
the Wigner–Dyson ensembles as [3]

R2(r) ∼ rβ for r  1 (58)

where r is the distance between two levels on a scale corresponding to the average level spacing
�(x) ∼ 1. For the GUE we have β = 2 and for the GOE β = 1. We conjecture, therefore,

β = 2

α
(59)

as a relation between the universal parameter β, which characterizes the short-distance
behaviour of the two-level correlation function, and the exponent α of the factor 1/N , which
multiplies the oscillating term in the 1/N expansion. With this relation we can extract from the
1/N expansion of the one-point function universal information about the two-point function,
which discerns the WD ensembles from each other (whereas the DOS is the same for all three
ensembles in the limit N = ∞).
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4.2. The symplectic ensemble

We have (with the same definition of n0(x) and S0(x) as in the GOE)

〈n(x)〉 = n0(x) +
1

N

1

8π2n0(x)
− 1

N
1
2

cos
[
NS0(x) + 1

2 arcsin(x/2)
]

(−1)N
√

8π
3
4 n0(x)

1
4

. (60)

Because each eigenvalue appears twice in a 2N × 2N-matrix from the symplectic ensemble
due to Kramers’ degeneracy [3], we have only N different eigenvalues and therefore N maxima
within the band. The oscillatory term comes with a 1/

√
N prefactor, therefore α = 1/2, which

gives with (59) the correct universal exponent β = 4.

4.3. Class C

The 1/N expansion yields

〈n(x)〉 = n0(x) +
1

N

1

8π2n0(x)
− 1

N

sin[2NS0(x) + arcsin(x/2)]

4π3xn0(x)2
. (61)

Each element of class C ensemble has a spectrum symmetric with respect to x = 0. To each
eigenvalue x there is a state with eigenvalue −x. The number of maxima in the band equals
2N , we have again one (non-degenerate) level per maximum. Now the spectral region around
x = 0 is different from the WD ensembles because there is no smooth limit of 〈n(x)〉 for
N → ∞. If one introduces the rescaled variable y = 2Nx/π and considers the microscopic
limit x → 0, N → ∞, keeping y finite, the DOS reads

〈n(y)〉 = 1

π

(
1 − sin(2πy)

2πy

)
(62)

which coincides with the result in [2]. In terms of y, the correction term is independent of N in
contrast to the GUE, where the oscillatory contribution to the DOS vanishes as 1/N for large
N. This, however, is not a signal of an enhanced level repulsion close to x = 0 in class C. It
is merely due to the lack of (approximate) translational invariance at the band centre, which
is caused by the reflection symmetry mentioned above. In the GUE, translational invariance
is broken only through the term proportional to exp

(−∑N
i=1 λ2

i

)
in the joint probability

distribution of the eigenvalues λi , which can be neglected close to the band centre and large
N. Therefore, the oscillatory structure in 〈n(x)〉 is smeared out by the summation over all
members of the ensemble, whereas in class C the quotient of the probability to find a level at
the first maximum with respect to the first minimum of 〈n〉 is independent of N. The spectrum is
therefore more rigid near x = 0. The two-level correlation function R2(y1, y1 +y) nevertheless
behaves for 0 < y1, y  1 as y2 and belongs therefore to the unitary universality class [2].
The correction term does not modify the macroscopic behaviour of 〈n〉 because the function
sin(Nx)/(Nx) tends to zero in the L2 sense for N → ∞. This means that the probability of
finding m states in a region of width �x = πm

2N
around zero tends to one for 1  m  N in

the limit N → ∞, as in the WD ensembles.
Because the 1/N approximation is reliable everywhere except at the band edge, we can

compute the average level spacing exactly in the vicinity of x = 0 without recourse to measure
x (respective y) in units of the mean spacing at a distance of many spacings from zero [2]. In
terms of y (which is exactly related to x and the original variable E through N ), the average
spacing between the first and second level >0 is given by

〈�y(1, 2)〉 = 1

2π
(z4 − z2) ≈ 1 (63)
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Figure 4. The GOE and the GSE. N = 10 in both cases. The full line is the exact DOS, the dashed
line is the saddle-point approximation.
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Figure 5. Classes C and D. N = 5 in both cases. The full line is the exact DOS, the dashed line is
the saddle-point approximation.

where zk > 0 denotes the kth zero of tan(z)−z. This relation is valid for large N but �(j, j +1)

can be computed via (61) for all levels j and j +1 not too close to the band edge and arbitrary N.

4.4. Class D

The same reflection symmetry as in class C is valid in class D. We have

〈n(x)〉 = n0(x) − 1

N

1

8π2n0(x)
+

1

N

sin[2NS0(x) − arcsin(x/2)]

4π3xn0(x)2
(64)

very similar to class C, but now the DOS is enhanced at the band centre because there are
always two states with eigenvalue close to zero. The number of different maxima is 2N − 1.
Again this feature vanishes in the N = ∞ limit, because the single additional state at x = 0 has
measure zero for vanishing average level distance �(E) ∼ 1/N . As in the class C ensemble
we have α = 1 and the universal exponent is β = 2. Class D belongs, therefore, with class C
to the unitary universality class, which determines the level repulsion even in the immediate
vicinity of E = 0, e.g. for the second and third states away from zero.

Figures 4 and 5 give the exact DOS and the 1/N approximation (dashed lines) for the
four ensembles.

5. Conclusions

We have computed the exact density of states for the three Wigner–Dyson ensembles as well
as for classes C and D by evaluating finite-dimensional supersymmetric integrals analytically.
In this way the N→∞ limit implicit in most of the previous calculations could be avoided.
The exact results were then employed to test a 1/N expansion, which does not employ
supersymmetric saddle points or saddle-point manifolds because it proceeds only in the
bosonic sector whereas the fermionic sector is evaluated exactly. It turned out that for all
ensembles only a discrete set of saddle points is important, whereas the saddle-point manifold
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at x = 0 appearing in class C/D is not needed for an basically exact computation of the DOS
everywhere in the spectrum (including x = 0) except the band edge. Note that this expansion
may contain noninteger powers of 1/N .

The 1/N expansion revealed a connection between the order α of N−1 multiplying the
oscillatory term of the DOS and the universal short-distance exponent β of the two-level
correlation function (59). In this way we obtain information about the two-point function
from the one-point function. We believe that relation (59) is always fulfilled, if the spectrum
is approximately ‘translational invariant’, i.e. R2(x1, x2) depends only on x2 − x1 (this is
implicit in all calculations using an unfolding procedure). At points in the spectrum where this
invariance is broken (as at x = 0 for class C/D) the two-point function has to be calculated
itself, which can, of course, also be done with our method.

Of course, the 1/N expansion can also be obtained using the large-N expansion of the
Hermite polynomials which appear in the exact formulae (7), (30), (37), (46), (52). But this
is only easy in the unitary case, where the exact DOS can be written in terms of HN,HN±1

only. Whereas this may be possible in the other cases as well, the calculations would become
cumbersome.

The 1/N expansion of the DOS yields an unambiguous determination of the average
level spacing �(E) in terms of E and N everywhere in the spectrum including x = 0 for all
ensembles. For class C/D we conclude that the special features of the DOS at the band centre
vanish in the macroscopic N → ∞ limit and are of no relevance if the bandwidth is kept
finite. The other Gaussian ensembles are currently under investigation.
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